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We report on neutron powder-diffraction experiments, inelastic incoherent neutron-scattering experiments,
and density-functional calculations on dynamics, order and disorder properties of LiBH4 and LiBD,. From
refinement of LiBD, structure at 10 and 302 K, we found an almost ideal tetrahedral geometry of BD, ions
(difference between shortest and longest interatomic distances is less than 4% for B-D bond, and less than 3%
for D-D bond), close to the calculated geometry. A quantitative agreement was found between experimental
and calculated anisotropic temperature factors of individual atoms. For phonon energies <15 meV, the pho-
non density of states of LiBH, in the low-temperature phase depends quadratically on the phonon energy while
for the high-temperature phase a linear dependence is observed, revealing a high lattice anharmonicity in the
high-temperature phase. Moreover, an increased phonon density of states at low energies in the high-
temperature phase compared to the low-temperature phase give a direct evidence for disorder in the high-
temperature phase of LiBH, of the hydrogen sublattice which can originate from orientational disorder of BH,
units. Potential energy landscape for rotation of BH, indicates that fairly localized minima and barriers higher
than 0.6 eV exist in the low-temperature phase, i.e., ordered BH, ions. The high-temperature structure shows
shallow barriers of ~0.2 eV without distinct energy minima, i.e., orientation of a single BH, unit cannot be
precisely defined. This corroborates the large thermal displacements observed in diffraction studies and high
disorder of BH, ions deduced from experimental partial phonon density of states in the high-temperature

phase.
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I. INTRODUCTION

Alkali and earth alkali complex hydrides have attracted a
growing interest as hydrogen storage materials.'=> Their ap-
plicability is due to their high gravimetric density of hydro-
gen up to 20 mass% and high volumetric density up to
150 kg m~3. For practical use, these compounds require re-
versible hydrogen release and uptake at temperature/pressure
conditions reasonably close to the ambient ones. Unfortu-
nately, not all these requirements are fulfilled by any simple
alkali or earth alkali complex hydride, due to either thermo-
dynamic or kinetic reasons.!=3 Limiting kinetics can in prin-
ciple be enhanced, by use of an appropriate catalyst [e.g., Ti
or Ti compounds for NaAIH, (Refs. 2 and 4)]. However,
elevated decomposition temperatures due to thermodynami-
cal limitations cannot be influenced by a catalyst. Therefore,
before addressing kinetics of hydrogen desorption and up-
take, it is crucial to find compounds with appropriate ther-
modynamic stability, for the pressure and temperature condi-
tions required for practical use.'>° Among the promising
complex hydrides,'% LiBH, has one of the highest known
gravimetric hydrogen densities of 18 mass% and volumetric
hydrogen density of 121 kg m™>. It is reversible for hydro-
gen release and uptake,”® and mainly desorbs hydrogen
above ~590 K.>!° To improve the rather slow kinetics of
hydrogen evolution in LiBH,,”® and possibly lower the
decomposition/formation temperature, it is mandatory to un-
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derstand the mechanism involved in the structural changes,
formation, and decomposition of the compound.? In particu-
lar, insight into dynamical properties, which are directly
linked to the kinetics of the compound are not well under-
stood in the literature.!'~16

LiBH, undergoes a structural phase transition from an
orthorhombic low-temperature structure (low-T phase) to a
hexagonal high-temperature structure (high-7 phase) around
380 K. The melting of the compound occurs at around 550
K. All reported experimental structural studies of LiBH, and
LiBD, (Refs. 10 and 17-19) have pointed out a dramatic
increase in hydrogen or deuterium thermal displacements by
almost 2 orders of magnitude from 4 to 400 K. This was
attributed to dynamical disorder in the high-7 phase.?*?!
However, the microscopic picture of dynamical processes in
this compound is still not well understood. It is not only
important for the study of structural properties, but it is cru-
cial for the understanding of the slow hydrogen diffusion in
LiBH,.2>% In order to shed more light on these processes,
we performed a combined experimental and theoretical in-
vestigation of dynamical properties of LiBH, and LiBD,.

In the low-T phase, LiBH, is an ordered quasiharmonic
crystal.!'82021.24 This allows a straightforward comparison of
the structure refined from diffraction data with the one ob-
tained from ab initio calculations. In the present paper we
report on the experimental low-7 structure of LiBD, at 10
and 302 K obtained from neutron powder diffraction (NPD)
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with high signal-to-noise ratio measurements. This data is
used in order to refine the best possible experimental struc-
ture (i.e., less biased by the covalent nature of the bonds®
between boron and hydrogen atoms) to be compared with ab
initio calculations. A particular emphasis is put on the com-
parison between experimental and theoretical results of ther-
mal motion of the atoms.

Anharmonicities are already noticeable at 302 K in the
low-T phase?'???* and increase dramatically above 380 K in
the high-T phase where disorder is present.'$2%2! Therefore
for the high-T phase, the refined structure from diffraction
data could not be directly compared with the calculated
ground-state structure, unless a structural model accounting
for disorder and anharmonicities is provided for ab initio
calculations. A recent attempt for a disordered theoretical
model of the high-T phase!¢ still needs to be verified experi-
mentally. In the present work, we have investigated the dy-
namical properties by means of inelastic incoherent neutron
scattering (IINS) performed at various temperatures on
LiBH, above and below the structural phase transition. This
provides the partial phonon density of states (PDOS) of the
hydrogen within the compound. Our measurements of the
functional dependence of the PDOS were focused on the low
energy lattice vibrations (energies smaller than ~15 meV),
giving evidence for temperature-dependent disorder of BH,
orientations and anharmonicities, independently from any
structural model. Our results on external vibrational modes
are therefore complementary to previous vibrational spec-
troscopy study'®202224 focused on internal vibrational
modes of LiBH,.

The excellent agreement found between the experimental
and calculated low-T structural properties of LiBD, allows
us to determine from ab initio calculations the potential en-
ergy landscapes of BH, rotations in both high-7" and low-T
phases, in order to interpret our IINS measurements of hy-
drogen partial PDOS. The corresponding calculated rota-
tional energy barriers of BH, change significantly between
the two phases.

II. METHODS
A. Experiment

LiBH, was purchased from Sigma-Aldrich Chemie
GmbH (purity >95.0%); LiBD, and Li(''BH,) were pur-
chased from Katchem Ltd. (produced on special request,
purity >95.0%). All samples were handled under either ar-
gon or helium atmosphere.

The NPD measurements were performed on the high-
resolution powder diffractometer for thermal neutrons®®
(HRPT) at the Swiss spallation neutron source (SINQ) at the
Paul Scherrer Institut (PSI) (Switzerland). Due to the high
neutron absorption of natural boron, the powder of LiBD,
was filled into a sealed double walled vanadium cylinder of 9
mm outer diameter, 7 mm inner diameter and 50 mm length.
The temperature control of the sample was done by means of
a closed-cycle He refrigerator mounted in an evacuated alu-
minum vessel. For the 10 K measurement, the sample holder
was mounted into an additional Al pot for the shielding from
radiation heating. Diffraction patterns were recorded with
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monochromatic neutrons of wavelength of 1.494 A. The ab-
sorption correction coefficient ©R=0.3752 for the sample
has been determined by transmission measurements. The
structural refinement was carried out?’ using the program
FULLPROF (Ref. 28) (version 3.80).

IINS experiments were performed on LiBH, on the time-
of-flight spectrometer for cold neutrons FOCUS at SINQ at
the PSI, and on Li(''BH,) on the crystal-analyzer inverse-
geometry time-of-flight spectrometer TOSCA at the ISIS
neutron pulsed source at the Rutherford Appleton Laboratory
(United Kingdom). Thanks to the large incoherent cross sec-
tion of hydrogen, PDOS to 99% represents the partial PDOS
of hydrogen. At FOCUS, the measurements were carried out
in neutron energy gain mode; therefore at the measured tem-
peratures, energies up to 60 meV were reasonably accessible.
The LiBH, powder was mounted into a flat aluminum
sample holder of 1 mm thickness. An incident neutron wave-
length of 4 A was selected. The signal of the empty alumi-
num sample holder and a flat background have been sub-
tracted with special attention.?? IINS spectra have been
recorded starting from temperatures of 293 and 350 K where
the LiBH, is in the low-T phase, and up to 425 K where the
LiBH, is in the high-T phase. A second spectrum was re-
corded at 350 K after the measurement done at 425 K in
order to check the reversibility of the phase transition (data
not shown). Corrections of the measured intensity in order to
obtain the PDOS are done for the term 1/ w, the polarization
factor, the Bose-Einstein statistics for the thermal population,
and the Debye-Waller factor. Multiphonon contributions
have been estimated and found negligible within the experi-
mental accuracy of the measurement. Although we do have
uncertainties in the Debye-Waller factor, the exact back-
ground, and absorption issues, the measured spectra are
quantitatively correct for energies below 15 meV, and quali-
tatively correct above 15 meV. These uncertainties are con-
sidered in the error bars of Fig. 3. At TOSCA, the IINS
spectra have been recorded at 25 K. Since the measurements
are carried out in neutron energy loss mode on a sample
containing isotope 11 of boron to get rid of the high neutron
absorption of natural boron, the analysis of the data is more
straightforward. The Li(''BH,) powder was mounted into a
flat aluminum sample holder of 1 mm thickness. The signal
of the empty aluminum sample holder and a flat background
have been subtracted. The raw data was corrected to obtain
S(Q; w) using standard routines available at ISIS, which was
subsequently corrected for the term 1/w, the polarization
factor, and the Debye-Waller factor. Multiphonon contribu-
tions were not removed from the data for a qualitative com-
parison with FOCUS data for energies between 10 and 60
meV.

B. Theory

The structure and the normal mode analysis were calcu-
lated within density-functional theory (DFT). The atomic
cores were represented by the projected augmented wave
(PAW) potentials’**3? with the electronic configuration
1s%2s' for Li, 2s22p' for B, and 1s' for H. The calculations
were performed with kinetic energy cutoff of 400 eV and
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FIG. 1. (Color online) Neutron-diffraction pattern for LiBD, and results of Rietveld refinement of the structural model at (a) 10 K, (b)

302 K. Excluded regions are, for (a) diffraction peaks arising from the
for (b) defect detector wire.

within the generalized gradient approximation (GGA) using
the PW91 (Ref. 33) exchange correlation functional. The
wave functions were sampled according to the Monkhorst-
Pack scheme with a k-points mesh of spacing =0.05 A~! for
both phases.

The lattice dynamics was determined using the forces act-
ing on atoms in the supercell. The dynamical matrix is con-
structed from the appropriate set of displacements of the
symmetry nonequivalent atoms. The details of the direct
method are presented elsewhere.>*3 For calculations of the
lattice dynamics and rotational barriers for BH, supercells
containing 96 atoms were used to assure that rotated BH,
units do not interact with their periodic images. The thermal
displacements were calculated according to the scattering
from factors proportional to exp[-W,(k)], where W (k) are
Debye-Waller factors. The W, (k) depends on the static cor-
relation function B(u) of atomic displacements U(u).

W, ) = k- () (k).
where B(u)=(U(u)U;(w)). In the harmonic approximation

correlation function can be expressed via the off-diagonal
partial phonon density of states g(w):

Al thermal shielding not completely removed by the radial collimator,

. h
B(M)dew&jf(w)coth(zk:T)

The phonon density of states was calculated for the low-T
Pnma phase'3¢ of LiBH,.

III. RESULTS AND DISCUSSION

A. Structure and thermal motion of the low-temperature
phase of LiBD,

The fits of the NPD patterns at 10 and 302 K resulting
from the Rietveld refinement of the orthorhombic structural
model with the space group Pnma and atomic sites as deter-
mined in previous SR-XPD work!'%!”!3 are shown in Fig. 1.
The refined parameters of the structure are indicated in Table
I. The interatomic distances of the BD, tetrahedron in the
present work (see Table II) are found to be close to the ideal
tetrahedral geometry. The relative difference between the
longest and shortest interatomic distance is smaller than 4%
for B-D bond, and smaller than 3% for the D-D separation.
This result is in good agreement with recently reported NPD
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TABLE I. Refined structural parameters of the low-T' phase of LiBD,. Space group Pnma (No. 62),

Z=4.
Uiso
Site T(K) xla y/b zlc (A%
Li/4c 10 0.155(3) 0.25 0.109(3) 0.003(12)*
302 0.160(4) 0.25 0.100(9) 0.05(3)?
B/4c 10 0.307(1) 0.25 0.433(2) 0.0039(15)
302 0.300(2) 0.25 0.431(3) 0.033(6)*
Dl/4c 10 0.9065(12) 0.25 0.926(2) 0.019(5)*
302 0.901(2) 0.25 0.931(3) 0.060(9)*
D2/4c 10 0.400(2) 0.25 0.2783(15) 0.025(6)*
302 0.396(3) 0.25 0.286(2) 0.087(15)*
D3/8d 10 0.2035(9) 0.0281(10) 0.4283(13) 0.027(3)*
302 0.2021(11) 0.0347(16) 0.4265(16) 0.083(6)*

T=10 K; a=7.1160(5) A, b=4.4056(4) A, c=6.6730(5) A
T=302 K; a=7.1526(6) A, b=4.4278(4) A, c=6.7933(6) A

#Equivalent isotropic temperature factor, calculated from Table III.

TABLE II. Comparison of selected interatomic distance ranges (A) of BD, and BH, tetrahedron, for
LiBD, and LiBH,. Difference between the two extreme values of each considered range A (%) is indicated.

Experimental, neutron powder diffraction

B-D D-D AB-D AD-D
10 K? 1.18(2)-1.23(2) 1.96(1)-2.00(1) 43 2.1
302 K¢ 1.18(2)-1.20(2) 1.91(1)-1.97(2) 1.7 32
3.5 K (Ref. 18) 1.208(3)-1.225(6) 1.95-2.00 1.4 2.6
360 K (Ref. 18) 1.184(16)-1.217(15) 1.88-1.97 3.0 4.8

Experimental, synchrotron x-ray powder diffraction

B-H H-H AB-H AH-H
298 K (Ref. 17) 1.04(2)-1.28(1) 1.73(1)-2.13(2) 23.1 23.1
298 K (Ref. 10) 1.29(4)-1.44(4) 1.29(3)-2.22(4) 11.6 72.1

Experimental, synchrotron x-ray single crystal diffraction

B-H H-H AB-H AH-H
225 K (Ref. 19) 1.104(11)-1.131(15) 24
Theoretical
B-H H-H AB-H AH-H
Ref. 13 1.238-1.258 2.002-2.091 1.6 4.4
Ref. 15 1.229-1.258 2.000-2.097 2.4 49
Ref. 37 1.228-1.276 1.973-2.090 39 5.9
Ref. 37 1.231-1.266 1.986-2.082 2.8 4.8
Ref. 38 1.224-1.23 1.972-2.015 0.5 2.2
Ref. 39 1.216-1.242 1.967-2.033 2.1 34
Ref. 40 1.218-1.222 1.960-2.004 0.3 2.2
Ref. 41 1.222-1.228 1.967-2.013 0.5 2.3
0 K (Ref. 41) 1.224-1.229 0.4
300 K (Ref. 41) 1.226-1.230 0.3

4Present work.
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TABLE III. Experimental and calculated anisotropic temperature factors of the low-7 phase of LiBDj,.

Atom T(K) Ui Upn Uss Ui Uiz Un;
Li 10 Exp 0.00(1) 0.01(1) -0.01(1) 0 —-0.008(9) 0
10 Calc. 0.00872 0.01226 0.01053 0 —0.00053 0
302 Exp 0.01(2) 0.06(2) 0.08(4) 0 0.01(2) 0
302 Calc. 0.02186 0.04897 0.04073 0 -0.00314 0
B 10 Exp
10 Calc. 0.00633 0.00702 0.00717 0 -0.00076 0
302 Exp  0.038(6) 0.034(9)  0.027(6) 0 ~0.002(9) 0
302 Calc. 0.02176 0.03708 0.03712 0 —-0.00353 0
D1 10 Exp 0.019(3) 0.029(5) 0.011(5) 0 0.005(6) 0
10 Calc. 0.01813 0.02360 0.01415 0 0.00582 0
302 Exp 0.068(9) 0.068(9) 0.045(6) 0 0.02(1) 0
302 Calc. 0.03869 0.06278 0.04146 0 0.00843 0
D2 10 Exp 0.025(6) 0.028(6) 0.022(6) 0 —-0.005(5) 0
10 Calc. 0.01618 0.03632 0.01289 0 0.00297 0
302 Exp 0.06(1) 0.14(2) 0.06(1) 0 —-0.013(9) 0
302 Calc. 0.03767 0.12839 0.03990 0 0.00072 0
D3 10 Exp 0.021(3) 0.022(3) 0.038(4) —-0.006(3) —-0.010(5) 0.001(4)
10 Calc. 0.02018 0.01577 0.02996 -0.00713 —0.00500 0.00258
302 Exp 0.077(6) 0.054(6) 0.116(9) -0.027(6) -0.026(9) 0.017(9)
302 Calc. 0.05074 0.05414 0.09844 -0.01837 -0.02168 0.00910

results,'® single crystal x-ray diffraction measurements,'® and
results obtained by ab initio calculations'>!337-4! where the
relative differences between the longest and shortest inter-
atomic distances are up to 4% for B-H, and up to 6% for the
H-H spacing (see Table II). The apparent shrinking of B-D
interatomic distances, apparently shorter of less than 2% at
302 K than at 10 K (see Table II) is essentially due to the
imperfect modeling of the thermal libration/bending and
riding motion by an ellipsoid distribution in the refinement
procedure.*> After correction®? of the bond lengths, assuming
a riding motion of the hydrogen about the center of mass of
a BD, unit, when going from 10 to 302 K the tetrahedra
show an expansion of less than 1% of the averaged B-D
interatomic distances.

A comparison has been done between the refined and ab
initio calculated matrix elements of the anisotropic tempera-
ture factors (see Table IIT). Qualitatively, the orientation of
the experimental and calculated 50% probability ellipsoids of
the deuterium atoms at 302 K are in good agreement with
little tilt differences for the D1 ellipsoid with respect to the
B-D1 bond direction, and D3 ellipsoid with respect to the
B-D3 bond direction [see Figs. 2(b) and 2(c)]. For both at-
oms this is due to the larger difference between the refined
and calculated value of the coefficient U;; compared to the
other coefficients of the temperature factors [see Fig. 2(a)].
The same holds for the difference between the refined and
calculated orientation of the ellipsoid of the B atom. The
larger difference between the refined and calculated orienta-
tion and shape of ellipsoid is found for the Li atom. However
the scattering power of this atom for neutron diffraction is
very weak, resulting in larger standard deviation of the re-
fined temperature factor parameters compared to the other

atoms (see Table IIT); the experimental accuracy of the tem-
perature factor parameters of Li can therefore not be com-
pared to the ones of D and B atoms. The agreement between
experiment and calculation is not only qualitative but also
quantitatively consistent as it is shown in Fig. 2(a) for the D3
atom of Table III. Accounting for 3%—5% accuracy for the
calculated normal modes frequencies,24 13 of the 18 calcu-
lated independent coefficients of the temperature factor ma-
trix match the experimental accuracy at 10 K (see Table III).
Slightly worse agreement at 302 K indicates deviations from
harmonicity (see Table III). Considering the complexity of
the structure with 14 independent structural parameters and
19 temperature factor parameters at 10 K (22 at 302 K),
possible rotational-translational coupling of the atoms result-
ing in local anharmonic potentials which is not taken into
account in the ab initio calculations, and the imperfect mod-
eling of libration/bending thermal motion by ellipsoids for
experimental analysis, the agreement between experiment
and calculation is surprisingly good.

B. Phonon density of states

From the PDOS shown in Fig. 3(a), the phase transition
from the low-T phase to the high-T phase is readily observ-
able with qualitatively different behavior at energies above
or below ~15 meV. For energy E>15 meV in Fig. 3(a),
two groups of PDOS peaks at E~25 meV and E
~48 meV are pronounced and narrow at 25 K for Li(''BH,)
in Fig. 3(a). They become less pronounced and broaden with
increasing temperature in the low-7 phase.** These two
peaks originate from optical modes, which are attributed to
lattice vibrations of Li* and BHj ions according to ab initio
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FIG. 2. (Color online) Comparison between experimental and
calculated thermal displacements for LiBDy. (a) Experimental and
calculated elements of the thermal displacements matrix for the D3
atom as a function of the temperature; (b) experimental 50% prob-
ability ellipsoids at 302 K, (c) calculated 50% probability ellipsoids
at 300 K.

calculations. Figure 3(d) represents the calculation of the
partial hydrogen PDOS caused by the hydrogen density fol-
lowing the overall BH; complex vibrations. Similar peak
broadening was reported in the literature and was either at-
tributed to large vibrational amplitudes,’® or to phonon
interactions.”** This was recently extensively discussed for
a series of Raman measurements®* on LiBH, where for some
peaks a broadening of a factor ~10 of the full width at half
maximum (FWHM) between 5 and 300 K was observed. The
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FIG. 3. (Color online) (a) PDOS of hydrogen for LiBH, in the
low-T phase at 295 K (blue squares) and 350 K (red triangles), in
the high-T phase at 425 K (green lozenges), and for Li(''BH,) in
the low-T phase at 25 K (black empty squares). Representative
errors bars are only shown for the data giving the biggest error bars,
i.e., at 295 K. (b) Enlargement for energies below 12 meV of the
PDOS of hydrogen for LiBH, shown in (a). (c) PDOS/E? in order
to emphasis the excess of low-E density of states at 425 K (green
lozenges) compared to the density of states at 295 K (blue squares)
and 350 K (red triangles), the black dotted line shows an exponen-
tial fit of the low energy transfer part of the data measured at 425 K.
(d) Theoretical calculation of partial PDOS of hydrogen for LiBH,.

complete disappearance of distinct peaks in the PDOS of the
high-T phase is surprising though. For E<15 meV, a spe-
cific feature of the high-7 phase compared to the low-T
phase is the increased PDOS, indicative of acoustic bands
that are lower in energy than found for the low-T phase. The
PDOS of the low-T phase depends quadratically on the pho-
non energy as expected by the Debye theory for acoustic
vibrations in crystalline solids [see Fig. 3(b)]. This feature is
basically temperature independent for energies below 15
meV. Interestingly, the high-7 phase shows a linear depen-
dence of the PDOS as a function of the phonon energy [see
Fig. 3(b)]. Compared to the PDOS given by the Debye
theory, the excess of density of states of the high-T phase
reveals a high lattice anharmonicity and it is a characteristic
feature of glasses and disordered systems.**~*® In the repre-
sentation of the reduced quantity PDOS/E? with respect to E
[see Fig. 3(c)], this characteristic excess of PDOS is more
clearly identified by a maximum in PDOS/E? called boson
peak**~4® (usually below ~8 meV). Figure 3(c) shows that
PDOS/E? for the low-T phase at 295 and 350 K is nearly
constant as function of energy as expected for an ordered
quasiharmonic crystal. Contrarily, for the high-7 phase
PDOS/E? at 425 K exhibits an exponential dependence with
respect to E [fitted by the black dotted line in Fig. 3(c)]
indicating a disorder in the high-7" phase similar to the one
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encountered in glasses and disordered systems.*’ This obser-
vation suggests large disorder of the BH, tetrahedra in the
structure. Quasielastic contributions are significant in our
data for E<2 meV. Even if we could not explicitly identify
a maximum of PDOS/E? at 425 K (Boson peak broadens
with increasing temperature and disappears close to the
glass-liquid transition®’), from the exponential fit [see Fig.
3(c)] the maximum of the boson peak is expected to be at
E=29(3)meV.

C. Calculation of the rotational energy barriers
of a BH, unit in LiBH,

Strengthened by the agreement between experimental and
calculated structure and temperature factors, we have calcu-
lated potential energy barriers for rotation of BH, units in
LiBH,. Potential energy landscapes shed more light on the
order and disorder features of BH, in LiBH, (resp. BD, in
LiBD,). The rotational barriers were calculated for the struc-
ture of the low-T phase with space group Pnma and with
space group P6ymc for the high-T phase.!” No atomic relax-
ation was performed during rotation, such that the potential
energy landscapes presented in Fig. 4 render adiabatic barri-
ers. Since the description of BH, orientation in Cartesian
three-dimensional space requires a three parameter space
based on Euler angles, we have decided to simplify the prob-
lem in order to represent it in two dimensions. Two rotational
axes were chosen for each structure. One of the axes is re-
lated to C, pseudosymmetry of BH,, the second one is the C;
symmetry of the molecule, as shown in Fig. 4(a). Potential
energy surfaces were calculated for rotation around C, axis,
and subsequent rotation around Cj axis. One has to keep in
mind that group of rotations is not commutative, thus rota-
tion first around C; than around C, would result in different
cross sections. The potential energy landscape is presented in
Figs. 4(b) and 4(c). Thanks to the almost perfect tetrahedral
shape of the BH, units, the intersection of the vertical, hori-
zontal, and frame lines of Figs. 4(b) and 4(c) correspond in
good approximation to equivalent orientations of the BHy
unit and zero energy level is defined for C,=C;=0. One can
see in Fig. 4(b) for the low-T Pnma phase that the orientation
of a BH, unit is fairly localized by the energy minima and
coincide with the equivalent orientations of the BH, unit,
i.e., equivalent orientations correspond to equilibrium orien-
tations of the BH, units, and the barriers between minima are
higher than 0.6 eV. The potential energy landscape is signifi-
cantly different for the high-7" P6;mc phase. One can see in
Fig. 4(c) that some equivalent orientations are surrounded by
regions of lower energy. These orientations are located in
fact on saddle points; therefore the energy minima of the
energy landscape do not coincide with the equivalent orien-
tations of the BH, unit. This is a simple visualization of the
fact that this structure is not stable in this symmetry, unless it
is stabilized by entropy (this was previously reported in the
literature by unphysical imaginary phonon modes in ab initio
calculations'>!3). The potential seen by rotating BH, mol-
ecule is very shallow when compared to low-7T phase, and
localized minima are not present. In fact shallow energy val-
leys traverse whole energy landscape, barriers between

PHYSICAL REVIEW B 78, 094302 (2008)

Y
04
0.8
1.2
1.6
2.0
24
2.8

b\
N
S S

240 300 360
(b) C, axis (deg)

C, axis (deg)

360
\/ 0
0.4
300- D\\,g 08
1.2
D 240 16
g @
7)) 180— ’
"% - 2.8
®
™ 120
O <4
60 -> Q
SHl/7 fan
0 120 180 240 300 360
© C, axis (deg)

FIG. 4. (Color online) Calculation of the rotational energy bar-
riers of the BH, tetrahedra in LiBH,. (a) Rotation axis C, and Cj
used for the description of all the orientations of the tetrahedra.
Potential energy surface calculated along the two axis C, and C; (b)
for Pnma space group, (c) for P63mc space group.

minima are ~0.2 eV. In recent Raman measurements®' on
LiBH,, two types of external thermal motion of the BH,
were suggested in order to fit the linewidth of the BH, bands
for the high-T phase: a reorientation barrier of 0.05(5) eV
around the C; axis of the BH, units and a barrier correspond-
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ing to orientational disorder between axial and peripheral
directions of the BH, units of 0.6(3) eV. Unless their signifi-
cant relative uncertainty, they are in agreement with the cal-
culated energy barriers. The calculated rotational energy
landscapes clarify this situation and the origin of disorder in
this phase. On Fig. 4(c), the lowest energy barrier is indeed
found for the rotation barrier about C; axis (for C,
=0°, 180°, 360°) as well as for orientations corresponding
to the extremities of the elongated energy valleys. Large
thermal displacements are also to be expected within the flat
energy valley. In order to evaluate the temperature depen-
dence of the reorientation rate of the BH, units, the follow-
ing Arrhenius equation was considered:

- AE
A exp 7 ,

where AE is the reorientation barrier and A=10'> Hz the
typical prefactor for thermally activated diffusion.® Small
barriers AE lower than ~0.2 eV indicate that above the tem-
perature of the phase transition (k<7=0.033 eV), the reorien-
tation time scale will be of the order GHz to THz. Thus,
orientation of a single BH, unit cannot be precisely defined;
orientational disorder must be present in at least four broad
directions with similar probability (all the barriers are
~0.2 eV, two of them corresponding to rotational disorder
about Cj axis). By contrast, for the low-T phase, the reori-
entation time scale will be of the order Hz at room tempera-
ture (k7=0.025 eV) and kHz at the temperature of the phase
transition. That is a minor disorder, slightly increasing with
temperature, is expected in this phase. These calculations
corroborate our IINS results, namely fairly ordered BH,
units in the low-T phase whose orientations are defined by
rather deep potential minima [in agreement with the PDOS
typical for a crystalline solid shown for low-T phase in Fig.
3(b)]. The highly disordered orientation of the BH, units in
the high-7" phase whose orientations are roughly defined by
shallow anharmonic potentials give rise to the PDOS typical
for highly disordered systems shown for high-7 phase in Fig.
3(b).

IV. CONCLUSION

In the present paper, we report experimental and theoret-
ical studies of dynamical properties of LiBH, and LiBD,. By
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means of neutron diffraction, we found an almost ideal tet-
rahedral geometry of BD, ions at 10 and 302 K (difference
between shortest and longest interatomic distances is less
than 4% for B-D bond, and less than 3% for D-D bond),
close to the calculated geometry. Furthermore, excellent
agreement was found between experimental and calculated
anisotropic temperature factors of individual atoms. The par-
tial phonon density of states of hydrogen has been measured
by inelastic incoherent neutron scattering in the low-
temperature phase (at 25, 293, and 350 K) and in the high-
temperature phase (at 425 K). For energies below 15 meV, an
increased phonon density of states is observed in the high-
temperature phase. While for the low temperature, a qua-
dratic dependence of the density of states on energy, charac-
teristic for quasiharmonic ordered crystal, is observed. This
gives a direct evidence for disorder in the high-temperature
phase of LiBH, of the hydrogen sublattice which can origi-
nate from orientational disorder of BH, units. Calculated po-
tential energy landscape for rotation of BH, indicates that
fairly localized minima and barriers higher than 0.6 eV exist
in the low-temperature phase, i.e., ordered BH, ions. The
high-temperature structure with P6smc symmetry shows
shallow barriers of ~0.2 eV without distinct energy minima,
i.e., orientation of a single BH, unit cannot be precisely de-
fined, corroborating the thermal displacements observed in
diffraction studies and high disorder of BH, ions deduced
from experimental partial phonon density of states in the
present work.
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